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Rate Adaptive Multimedia Streams: Optimization
and Admission Control

Steven Weber, Member, IEEE, and Gustavo de Veciana, Senior Member, IEEE

Abstract—This work investigates support of rate adaptive multi-
media streams on communication networks. Optimal and practical
mechanisms to maximize the customer average quality of service
(QoS), defined in terms of a normalized time average received rate,
are established. By scaling the arrival rate and link capacity, we ob-
tain asymptotic expressions for customer average QoS in the case
of networks with single bottleneck links. The optimal adaptation
policy is identified as the solution to an integer program which has
an intuitive “sort by volume” interpretation for the case of single
bottleneck links, where stream volume is the total number of bits
associated with a stream at its maximum resolution. Our asymp-
totic analysis shows the optimal adaptation policy may yield per-
formance improvements of up to 42% over baseline policies. We
demonstrate that a static multi-class admission control policy can
achieve the same asymptotic QoS as that of the optimal adaptation
policy. This implies that dynamic adaptation may be unnecessary
for large capacity networks with appropriate call admission.

Index Terms—Admission control, rate adaptation, resource allo-
cation, streaming media.

I. INTRODUCTION

WE investigate how to best allocate network bandwidth
among clients receiving multimedia streams. In partic-

ular, we focus on how to allocate bandwidth when streams are
available at a number of possible subscription levels, where dif-
ferent levels correspond to different qualities of stream resolu-
tion. We refer to streams offering multiple subscription levels as
rate adaptive multimedia streams. We assume the network guar-
antees that each admitted client will be able to subscribe at least
at its lowest subscription level, i.e., we assume a next-genera-
tion network with an admission control mechanism. However,
we are interested in identifying the optimal allocation of the
remaining bandwidth, i.e., after all of the minimum subscrip-
tion levels have been satisfied. To pose the problem in a dif-
ferent light, rate adaptive streams have the flexibility to dynam-
ically match their bandwidth requirements to changing band-
width availability along their routes. Thus, rate adaptivity per-
mits a stream to utilize a higher transmission rate when network
congestion is low, and a lower transmission rate when network
congestion is high. The optimal bandwidth allocation is there-
fore the optimal adaptation policy, where an adaptation policy
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specifies the subscription level to which the client should sub-
scribe at a given point in time.

There are two complementary approaches to studying rate
adaptive streams: the client and system perspectives. The
client perspective views the network congestion experienced
by a given stream as an exogenous process, and seeks to
maximize that client’s overall quality of service (QoS). The
system perspective views congestion as the superposition of
active streams, and seeks to maximize the client-average QoS
by specifying an adaptation policy for all active streams. In
this paper we focus on the system perspective. Some of the
conclusions obtained from the system perspective are at odds
with conclusions obtained from the client perspective.

A. Optimization and Number of Subscription Levels

From the client perspective, it would seem logical that a
stream should be encoded with as many subscription levels
as possible. This would allow clients to choose a subscription
level appropriate for a wide variety of congestion levels. We
show, however, that from the system perspective, the client-av-
erage QoS can be maximized under an adaptation policy which
requires only two subscription levels per stream. These two
subscription levels correspond to the “coarsest” and “finest”
resolutions, i.e., the minimally acceptable subscription level
and the maximally useful subscription level. Thus, from a
system perspective, there is little benefit in offering a wide
variety of subscription levels, assuming flows are not peak rate
constrained by their access line. This result follows from our
definition of QoS as a linear measure in the encoding rate. In
particular, we define the QoS of a stream client as the fraction
of the stream volume received by the client, i.e., the number of
bits received by the client divided by the number of bits used to
encode the media content at its maximum resolution.

B. Admission Control and Dynamic Adaptation

From the client perspective, it appears reasonable to expect
that achieving a high client QoS requires the client be able to
assess changes in congestion level and respond by adjusting
the subscription level quickly and accurately. We show that, for
large numbers of streams sharing bandwidth on large capacity
links, there is in fact little need for dynamic adaptation. We
present a static multi-class admission policy whereby a stream is
assigned to a class (subscription level) at the time of admission
based on its volume, which it then maintains throughout its dura-
tion, i.e., no dynamic adaptation. Here, the volume of a stream is
the product of its time-average maximum subscription level and
its duration, i.e., the number of bits associated with the stream
at its maximum resolution. We show that the asymptotic QoS
obtained under the optimal multi-class admission policy equals
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the asymptotic QoS obtained under the optimal dynamic adap-
tation policy. Intuitively, for large capacity links the ensemble
of active streams is essentially constant, and the optimal adap-
tation policy will assign a given stream the same subscription
level throughout its duration.

The rest of this paper is organized as follows. In Section II,
we introduce our model for rate adaptive streams, client QoS,
and the network. In Section III, we identify the optimal adap-
tation policy for the case where stream durations are known a
priori and the case where they are unknown (but their distri-
bution is known). We then introduce a scaling regime appro-
priate for large numbers of streams sharing large capacity links,
which yields the asymptotic client-average QoS under the op-
timal adaptation policy. In Section IV, we introduce a multi-class
admission control policy and show that, when correctly config-
ured, the asymptotic client-average QoS obtained under the op-
timal admission control policy equals the asymptotic QoS under
the optimal dynamic adaptation policy. Finally, Section V con-
cludes with a discussion of related work.

II. THE MODEL

Throughout this paper, we assume all random variables
are continuous so that their cumulative distribution functions
(CDFs) have an inverse. We also assume all random variables
to have finite support on a subset of . We will use the
following convention for random variables. A random variable

will have a CDF , a complementary CDF (CCDF) , a
PDF , and an inverse CDF .

A. Stream Characteristics

We model a rate adaptive stream by four parameters: stream
duration, maximum subscription level, adaptivity, and the set of
offered subscription levels.

Stream Duration: Stream durations are random variables,
denoted by , with a common distribution , and mean

. A known stream duration is denoted by . We
assume all encodings of a given stream share the same duration,
i.e., compression does not impact the stream duration. The
stream duration need not necessarily equal the content duration,
i.e., clients may terminate a stream prior to the completion of
the content. We do assume, however, that the stream duration is
independent of the client perceived QoS.

Maximum Subscription Level: The maximum subscription
level is defined as the effective bandwidth of the stream when
encoded at the maximum resolution deemed useful by the
provider, i.e., an encoding such that a higher resolution yields
a negligible increase in perceived quality.

Maximum subscription levels of streams are modeled via
random variables, denoted by , with a common distribution

, and mean . A known maximum subscription level
is denoted by . Maximum subscription levels are assumed to
be independent of stream durations.

Adaptivity: Stream adaptivities are defined as the ratio be-
tween the maximum subscription level and the minimum sub-
scription level. The minimum subscription level is the effective
bandwidth of the stream when encoded at the minimum resolu-
tion deemed useful by the provider, i.e., an encoding such that
a lower resolution yields a stream with unacceptable perceived

quality. Adaptivities are random variables, denoted by , with
a common distribution , and mean . The support
of is necessarily within (0,1]. A known adaptivity is denoted
by . Adaptivities are assumed to be independent of both dura-
tions and maximum subscription levels. Note that a stream with
maximum subscription level and adaptivity has a minimum
subscription level of . In contrast with and , may be
discrete.

Offered Subscription Levels: A stream is offered at a set of
discrete subscription levels, denoted by

, where denotes the number of sub-
scription levels available to clients, and is the effective band-
width corresponding to subscription/encoding . This abstrac-
tion is independent of the type of encoding used to create the
subscription levels, e.g., hierarchical or simultaneous encoding.
In hierarchical encoding, subscription level corresponds to
the sum of the first layers, while for simultaneous encoding,

corresponds to the th smallest encoding. We will focus in
the sequel on the two subscription levels and , the min-
imum and maximum subscription levels.

B. Network Model

We let denote the set of links, and the vector
denote the capacities of those links. We assume this capacity is
shared by rate adaptive streams. In particular, we assume that
the streaming traffic is given priority over the best-effort traffic
on the network, so that the entire link capacity is available to
the streaming traffic and the available capacity on each link is
therefore assumed to be time invariant. Let denote the set of
routes, where a route is composed of a set of links

. The vector denotes the arrival
rate of new stream requests on each route. We assume all arrival
processes are Poisson. The notation
denotes the set of routes incident on link .

The random variables denote the
stationary numbers of active streams on each route at a given
time . We write when this quantity is
assumed known.

Finally, the notation ( , ) indexes stream on route . For
any model parameter , the notation refers to a parameter
for stream ( , ).

C. Quality of Service

Modeling quality of service for multimedia streams is a dif-
ficult, and largely unsolved, problem. The Video Quality Ex-
perts Group recently performed a statistical analysis of nine pro-
posed objective measures of video quality [1]. They found that
none of the proposed models functioned adequately to replace
subjective testing. In addition, the performance of the objective
models were found to be statistically indistinguishable from one
another.

Modeling quality of service for rate adaptive streams
promises to be an even harder problem due to the dynamic
changes in instantaneous rate. Below, we define three aspects
of QoS which we feel are especially important.

Expected Normalized Time-Average Subscription Level: It
seems reasonable to assume that, all other factors being
equal, client perceived video quality for rate adaptive streams
is increasing in the time-average subscription level, i.e.,
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, where the times and respec-
tively denote the arrival and departure time of a typical stream.
Due to the highly heterogeneous nature of media rates (e.g.,
streaming audio versus streaming video), it would be inap-
propriate to compare two clients based on their time-average
received rates alone. We therefore normalize the time-average
received rate by the maximum subscription level , to obtain the
client QoS . Note that .
Our first system level QoS parameter is , the average QoS
seen by a typical client:

(1)

where denotes expectation taken with respect to a cus-
tomer average. We emphasize that our quality of service metric
is normalized by stream volume. Our justification for this nor-
malization is to permit fair comparison between the QoS expe-
rienced by streams whose encoding rate and/or stream duration
may vary over an order of magnitude. The effect of this normal-
ization is that our theorems on resource allocation and admis-
sion control are volume dependent.

Expected Rate of Adaptation: Rate of adaptation is de-
fined as the number and magnitude of the changes in
subscription level. It has been shown that client QoS is
adversely affected by these changes [2]. We define the set
of subscription level change times for a given client as

. We then define the
rate of adaptation . Our
second system level QoS parameter is , the average rate
of adaptation seen by a typical client:

(2)

Blocking Probability: To minimize the blocking probability
we restrict ourselves to policies which admit as many streams
as possible while respecting the minimum rates required by al-
ready admitted streams. Thus, we allow admissions even if that
admission requires one or more admitted streams to reduce their
subscription levels in order to accommodate the new stream. In
particular, a stream with parameters will be admitted on
route at time provided

(3)

We define the stationary blocking probability for such a stream
by

(4)

where the probability is taken with respect to the stationary dis-
tribution of the network. Note that the admission policy is inde-
pendent of the adaptation policy.

Fig. 1. A typical utility curve of client satisfaction versus encoding rate.
Content providers would likely offer encodings at rates between the minimum
rate as and the maximum rate s; QoS may be approximated as a linear function
within this region.

Of these three QoS measures, we will focus on , the
normalized time–average subscription level of a typical client.
In particular, we will identify the dynamic adaptation policy
which maximizes this quantity. We will, however, investigate
the resulting rate of adaptation and blocking probability of this
policy, and contrast these aspects of QoS with our results on op-
timal admission control policies in Section IV.

We emphasize that our primary QoS metric is linear in the
encoding rate. The actual utility curve describing client satis-
faction versus encoding rate is likely to have a structure like that
shown in Fig. 1 [3]. Media providers might provide minimum
and maximum encodings at encoding rates and , where is
the minimally acceptable encoding rate and is the maximally
useful encoding rate. The shape of the utility curve between
and is not linear but can be reasonably well approximated by
a linear function.

III. OPTIMAL ADAPTATION

An adaptation policy assigns each active stream a fea-
sible subscription level at each time such that capacity
constraints are satisfied on each link. In particular, a
policy , assigns subscription levels to ongoing streams

such that

and .
We define the optimal adaptation policy as that which maxi-

mizes the expected normalized time-average subscription level
. To ensure feasibility we restrict ourselves to nonantici-

patory policies, i.e., those policies which determine an alloca-
tion for a time based on information available at that time.
We identify the optimal adaptation policy under two different
assumptions on available information: when stream durations
are known at the time of admission (Section II-A), and when
they are unknown (Section II-B). The former corresponds to
the case of stored media, and the latter corresponds to the case
of live media. For each case, we show the optimal adaptation
policy is found by solving an integer program at each time .
For the specific case of single bottleneck routes, we obtain a
closed form solution of which offers the basic insight on the
nature of the optimal policy. Simulation results are presented in
Section III-C. Finally, we present a linear scaling regime in Sec-
tion III-D which permits closed form asymptotic expressions for

under the optimal adaptation policy.
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A. Known Stream Durations

In this section, we assume stream durations are known at the
time of stream admission. We define the instantaneous aggre-
gate QoS at time as

(5)

where is the allo-
cation given to each stream. We write for the instanta-
neous aggregate QoS under a policy and for the corre-
sponding allocation. The following theorem demonstrates that
maximizing is equivalent to maximizing at each
time subject to capacity and subscription level constraints. We
let denote the optimal policy which maximizes and
will also identify a near-optimal policy .

Theorem 1: The adaptation policy that maximizes
when stream durations are known is the instantaneous band-
width allocation at each time resulting from the solu-
tion of the following integer programming problem:

(6)

There exists a feasible allocation with
for all and all such

that the value of the objective under is nearly optimal.
In particular,

(7)

where , and . See the Appendix for
proof.

The first part of the theorem demonstrates that each stream
is weighted inversely by its volume , i.e., the
product of its maximum subscription level and its duration. The
intuition is that the system is able to maximize the customer
average QoS by granting higher QoS to customers consuming
fewer network resources. The second part of the theorem
illustrates the existence of a near–optimal allocation such that
all streams use either their minimum or maximum subscription
level. Thus, for networks supporting large numbers of streams
we may achieve a close to optimal solution by only using the
minimum and maximum subscription levels. Note that the
integer programming problem in Theorem 1 corresponds to a
0 – 1 multidimensional knapsack problem which is known to
be NP-hard [4].

This implies, from the system perspective, that there is
little need for content providers to offer intermediate subscrip-
tion levels, i.e., between and . This conclusion is
markedly different from that obtained if one considers the
problem of supporting rate adaptive multimedia streams from
the client perspective, which suggests streams are more resilient
to congestion when they have numerous subscription levels
available.

We define a bottleneck link as any link requiring adaptation,
i.e., . We use the phrase “single bottleneck
link” to denote any bottleneck link that is the unique bottleneck
for all streams traversing it. For this case we can write down the
allocations , from Theorem 1 in closed form. We
simplify notation by dropping the subscripts and , so that
denotes the number of streams traversing the bottleneck link,
denotes the bottleneck link capacity, and the subscript refers
to the stream traversing the link.

Corollary 1: Consider a bottleneck link traversed by
active streams, labeled in order of increasing volume

. The allocations , of Theorem 1 for the
case of single bottleneck links are

(8)

where

(9)

See the Appendix for proof.
On single bottleneck links, the optimal adaptation policy sorts

the active streams on the bottleneck link by volume, granting
the full subscription level to as many streams as possible while
ensuring sufficient capacity is available to allow the remaining
clients to subscribe at their minimum subscription level. For
large capacity links servicing large numbers of streams the dif-
ference in the objective between and will be neg-
ligible, and we may obtain a QoS comparable to the optimal by
using only the minimum and maximum subscription levels for
each stream.

B. Unknown Stream Durations

In this section, we assume stream durations are unknown at
the time of stream admission. We denote the optimal adaptation
policy under this assumption by , and the approximate op-
timal adaptation policy by .

Theorem 2: The adaptation policy that maximizes
when stream durations are unknown is the instantaneous band-
width allocation at each time resulting from the solu-
tion of (6) with the quantity replaced with

, where is the current age of stream at
time . There exists a feasible allocation with

for all and all such
that the value of the objective under is nearly optimal. In
particular,

(10)

for . See the Appendix for proof.
If a stream is admitted at time then its current age at time is

. For the case of unknown stream durations we see that
streams are weighted according to their expected inverse volume
at time , i.e., , as opposed to
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being weighted according to their inverse volume as
in the case for known stream durations.

The solution to (6) when there is at most one bottleneck link
per route and stream durations are unknown is to sort streams
traversing a given bottleneck by “expected” volume. We define
the expected volume as

.
Corollary 2: Consider a bottleneck link traversed by

active streams, labeled in order of increasing expected volume
. The allocations , for

the case of at most one bottleneck link per route and unknown
stream durations are given by (8) and (9) with ( , )
replacing ( , ). See the Appendix for proof.

The corollary illustrates that although stream durations may
be unknown, the near-optimal allocation still only makes use of
two subscription levels: and .

C. Simulation Results

We performed simulations to investigate the performance of
the optimal adaptation policies under the assumption that stream
durations are known and unknown. All simulations in this paper
are for a network consisting of a single bottleneck. For this and
all the simulations in this paper, we used the following distribu-
tions for stream characteristics. Stream durations and maximum
subscription levels were drawn from a bounded exponential dis-
tribution, i.e.,

(11)

We also investigated many other distributions and will com-
ment on the results in the sequel. Stream durations were drawn
from a bounded exponential distribution with a maximum
duration seconds, and exponent ,
yielding a mean seconds, and a variance

. Maximum subscription levels were drawn
from a bounded exponential distribution with maximum rate

MB/s, and exponent , yielding a mean
MB/s, and a variance .

Note that the values and are large enough that
the mean and variance of and are nearly identical to
the corresponding values for the unbounded exponential
case. Note that the stream volumes have a range between 0
(MB) and MB, and a mean of

MB. The variance of can be calcu-
lated to be . Stream adaptivities are uniformly
distributed between 1/4 and 3/4, i.e., . Note
in particular that . We varied the mean arrival
rate, using and a corresponding link capacity of

MB/s depending on . As
will become clear in the sequel, this corresponds to a capacity
scaling where . All simulations were run for about
15 000 clients.

Figs. 2 and 3 show histograms of the client averages of
and , grouped by volume into bins, i.e., and

versus volume (in MB). Several points are
noteworthy. Foremost, the figures demonstrate that streams with
very small or very large volume experience a very low rate of
adaptation, especially when stream durations are known, while
streams with intermediate volumes experience very high rates

Fig. 2. Simulation histogram of the time-average normalized subscription
level Q versus the stream volume V = SD (in MB) under the optimal
adaptation policies (known and unknown stream durations).

Fig. 3. Simulation histogram of the rate of adaptation R versus the stream
volume V = SD (in MB) under the optimal adaptation policies (known and
unknown stream durations).

of adaptation. Similarly, streams with small volumes experience
the maximum possible QoS, i.e., 1, those with large volumes ex-
perience the minimum average possible QoS, i.e., ,
while those with intermediate volumes have a QoS that decays
in stream volume. These observations align with our intuition
on how optimal adaptation policies will perform. Since we sort
streams by volume into two classes, it follows naturally that
those with small volumes will always be in one class, those with
large volumes will always be in the other, and those with inter-
mediate volumes will toggle between the two classes, depending
on the makeup of the volumes of the active streams. Also note
that the optimal policy is more efficient at sorting streams by
volume when stream durations are known than when they are
unknown; this follows naturally from the fact that more infor-
mation is available in the former case than in the latter.

D. Asymptotic Results

We introduce a scaling regime to model the case where large
numbers of streams share large capacity links. Our results in this
section are limited to the case of single bottleneck links. We drop
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the link and route subscripts and so that is the bottleneck
link capacity and is the arrival rate of streams on that link.

Consider a sequence of links with arrival rates and link ca-
pacities indexed by , i.e., . We linearly
scale the arrival rate as , and we linearly scale the
bottleneck link capacity as

(12)

Here, is a scaling parameter. Recall that is the mean
stream duration and is the mean peak subscription level. Note
that the average offered load (in units of bandwidth) assuming
no adaptation takes place is , so that can be under-
stood as the ratio of available capacity over this offered load,
i.e., . Note that the average number of active
streams (in a low–blocking regime) will be , so we can
also interpret as the average fraction of the average maximum
subscription level available to each stream sharing the link, as-
suming the bandwidth is distributed evenly, i.e.,

.
This scaling encompasses three distinct regimes, parameter-

ized by .
• Overloaded Regime: . Here, the bandwidth divided

by the average number of active streams is less than that
required to support streams at their average minimum sub-
scription level, i.e., . The asymptotic average
blocking probability in this regime is . We call
this the overloaded regime.

• Rate Adaptive Regime: . Here, the bandwidth
divided by the average number of active streams lies be-
tween the average minimum subscription level and the
average maximum subscription level, i.e.,

. The asymptotic average blocking probability in this
regime is 0. We call this the rate adaptive scaling regime;
this will be the regime of primary interest in the sequel.

• Underloaded Regime: . Here the bandwidth di-
vided by the average number of active streams strictly ex-
ceeds the average maximum subscription level, i.e.,

. The asymptotic average blocking probability in this
regime is 0. We call this the underloaded regime.

We define the asymptotic client average QoS under the
optimal adaptation policy , when the system is scaled with
scaling parameter , to be

(13)

where denotes the steady-state QoS seen by a typical
stream in the scaling of the link.

We also define some new notation for CDFs. If is a random
variable with CDF , then the random variable is defined
as having a CDF . Also, for
two independent random variables and , the
quantity is defined as

(14)

and corresponds to the CDF of the product . Combining
these definitions implies can be interpreted to be

(15)

Fig. 4. Plot of the asymptotic QoS q versus the capacity scaling parameter
 for S and D exponentially distributed. Two plots of simulation results under
the optimal adaptation policy (known stream durations) show convergence to the
asymptotic QoS. In addition, the plot marked fair share denotes the asymptotic
QoS under a policy where streams share bandwidth fairly. The label indicates
that at  = 0:6 the optimal policy achieves an asymptotic QoS 25.4% greater
than under fair share, i.e., a 42% increase in performance.

The following theorem demonstrates the asymptotic QoS for
the optimal adaptation policy for each of the three regimes.

Theorem 3: Under the optimal adaptation policy for known
stream durations, , the asymptotic normalized time-average
subscription level for the case of single bottleneck links is

(16)

where . See the Appendix for proof.
The above expression for the asymptotic QoS depends on

four quantities: the scaling parameter , the average adaptivity
, the distribution of the maximum subscription levels , and

the distribution of stream durations . These equations can be
thought of as asymptotic analogues to Erlang’s blocking prob-
ability equations for loss networks. Erlang’s equation gives the
QoS for a loss model, i.e., the blocking probability as a
function of the offered load and the number of circuits on the
link , is

(17)

The equation permits link designers to provision the number
of circuits to achieve a target blocking probability (QoS) for
the estimated load. The above expression gives the asymptotic
QoS for rate adaptive streams, i.e., the asymptotic normalized
average subscription level, as a function of the scaling param-
eter and stream distributions. The overloaded and underloaded
scaling regimes yield the trivial QoS bounds of and 1, respec-
tively.

Fig. 4 exhibits the asymptotic QoS for known stream dura-
tions, , versus the scaling parameter . Also shown are
two plots of simulation results illustrating the convergence to
the asymptotic QoS. Recall the scaling regimes have transi-
tions at and . The two simulation results
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use and , respectively, and a link capacity
. The figure illustrates that the simulation results agree

with the computed asymptotic QoS for . The simulations
show a slower convergence to the computed asymptotic values
for the overloaded regime . For small in this
regime, blocking of streams with large minimum subscription
levels will permit admitted streams to temporarily increase
their subscription levels until a stream with smaller is ad-
mitted to use that capacity. In the asymptotic regime, however,
the aggregate minimum subscription level is always at capacity
and admitted streams receive their minimum subscription level
throughout their duration.

In our previous work [5], we analyzed sub-optimal adapta-
tion policies. One such policy was the fair-share policy, denoted

, where streams share the available bandwidth equally, sub-
ject to capacity and subscription level constraints. We also in-
vestigated performance under a a two-rate randomized adapta-
tion policy, denoted , which selects a random subset of the
streams to receive their maximum subscription level and grants
the remaining streams their minimum subscription level. One
can show that the asymptotic QoS under these adaptation poli-
cies is given by

(18)

Thus, the asymptotic QoS under these two sub-optimal policies
achieves a linear performance improvement in , also plotted in
Fig. 3. Note that are independent of the stream
duration and maximum subscription level distributions. The dis-
tance between and indicates the optimal adaptation
policy achieves an asymptotic QoS up to 25% greater than these
baseline policies, which translates to a relative improvement of

%.
We investigated several other probability distributions for

and , several of which are plotted in Fig. 5. In addition to
the bounded exponential distribution, we also studied the uni-
form distribution and the bounded Pareto distribution. To facil-
itate comparison we kept the means of all the distributions the
same, namely, MB/s and seconds. The
uniform distributions we used are and

. The bounded Pareto distributions we used
are and ,
where means a Pareto distribution over ( , )
with an exponent of . Table I shows the distributions, the vari-
ance of the corresponding volume , and five summary
statistics over the rate adaptive regime ( ). The
statistics we considered are

Fig. 5. Plot of the asymptotic QoS q versus the capacity scaling parameter
 for several pairs of distributions for S and D. The pairs in Table I not plotted
here are bounded above and below by one of the plots shown.

TABLE I
VARIOUS COMBINATIONS OF DISTRIBUTIONS FOR THE MAXIMUM

SUBSCRIPTION LEVEL AND STREAM DURATION, THE CORRESPONDING

VARIANCE, AND THE STATISTICS z ; . . . ; z

These correspond to the average QoS, the average increase in
QoS, the average improvement in QoS, the maximum increase
in QoS, and the maximum improvement in QoS.

To our surprise there is not a direct correlation between the
variance and any of the five summary statistics consid-
ered above.

IV. OPTIMAL ADMISSION CONTROL

Figs. 1 and 2 illustrate a serious drawback to the optimal
adaptation policy: streams with intermediate volumes suffer an
unacceptably high rate of adaptation. The figures also exhibit
that streams with small or large volumes experience little to no
adaptation. Intuitively, most streams experience zero adaptation
when there are large numbers of streams sharing large capacity
links because the ensemble of active streams is fairly constant,
and therefore the optimal adaptation policy results in a given
stream either consistently being granted its full subscription
level, or consistently being granted its minimum subscription
level. This insight suggests that dynamic adaptation may not
be necessary for large capacity links. In particular, it suggests a
static admission control policy whereby small volume streams
maintain a maximum subscription level while large volume
streams maintain a minimum subscription level throughout
their duration.
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In this section, we investigate admission and adaptation
policies where, upon admission, streams are assigned a perma-
nent subscription level based on their volume. We will in fact
identify an asymptotically optimal multi-class admission con-
trol policy and show that the asymptotic QoS obtained under
this policy equals that obtained under the optimal dynamic
adaptation policy. The implication is that there is little benefit
to dynamic adaptation when streams share large capacity links.
For this section we restrict our attention to the case where
stream durations are known at the time of admission, i.e., live
media streams with unknown durations are not considered.

We parameterize a set of admission/adaptation policies as fol-
lows. Upon admission each stream is assigned to an adaptation
class based on its volume. Streams admitted to class 1 receive
their full subscription level and streams admitted to class 2 re-
ceive their minimum subscription level. We will show that two
classes suffice to obtain an asymptotic QoS equal to that ob-
tained under the dynamic adaptation policy. Note that the class
of admission policies can be thought of as a subset of the class of
adaptation policies, where adaptation decisions are only made
at the time of a stream’s admission into the network. Thus,
showing that an admission policy achieves an asymptotic QoS
equal to that under the optimal adaptation policy implies that
admission policy is optimal.

Let denote a set of volume thresholds such
that a stream with volume admitted on route is assigned
its maximum subscription level if and is assigned its
minimum subscription level otherwise. Note that, by definition,

and , so that these allocations are
feasible. We let index the two classes on each route
and we number the active streams in each class so that ( , ,
) refers to stream in class on route . Define and

. We can then say the bandwidth assigned to an arbitrary
stream admitted to class is . With
this notation we can describe the admission rule for arriving
streams. A stream on route with parameters and is admitted
provided

(19)

where is the number of
active streams in each class on each route.

We extend our definition of the scaling regime presented in
Section III-D to an arbitrary network. We consider a sequence
of networks indexed by , where the arrival rate on route
in the network is . We define

as the aggregate arrival rate on link in the
network. Finally, we let the link capacities in the network
be given by . The condition for each

is necessary for a low blocking regime.
The arrival rate of class streams on route in the net-

work is

(20)

We consider multi-class admission policies that achieve an
asymptotic zero blocking probability by requiring the asymp-
totic utilization be 1 on each link , i.e.,

(21)

It is shown in [6] that blocking is asymptotically zero for
this case, although convergence is . Our objective
is to maximize the asymptotic customer average normalized
subscription level which, under the assumed asymptotic zero
blocking regime, is given by

(22)

Thus, we need to identify the optimal set of volume thresholds
that maximizes the asymptotic normalized subscription level

(22) subject to the asymptotic utilization being bounded by 1 on
each link (21).

The following result proves that two adaptation classes are
sufficient to obtain the asymptotic QoS obtained under dynamic
adaptation.

Theorem 4: The asymptotically optimal two-class admission
policy, , that achieves asymptotic zero blocking, has a volume
threshold

(23)

where is a vector of optimal Lagrange multi-
pliers on the constraints (21). See the Appendix for proof.

The format of (23) suggests the intuitive understanding that
the optimal route threshold is inversely proportional to the route
cost , using the interpretation of the Lagrange multiplier
as the marginal cost of the congestion level of the link.

For the case of single bottleneck links we are able to obtain a
closed form solution for the asymptotic QoS under the asymp-
totically optimal admission policy, .

Theorem 5: The asymptotically optimal two-class admission
policy, , that achieves asymptotic zero blocking for the special
case of single bottleneck links has a volume threshold

(24)

where . The asymptotic normalized sub-
scription level under this policy is

(25)

See the Appendix for proof.
Notice that the asymptotic normalized subscription level

under the optimal admission policy given by (25) is identical
to the asymptotic QoS under the optimal dynamic adaptation
policy given by (16). Thus, there is no need to perform dynamic
adaptation when streams share large capacity links if intelligent
admission control is performed. One caveat to this result is that
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Fig. 6. Plot of the asymptotic QoS q versus the capacity scaling parameter
 . Two plots of simulation results under the optimal admission policy (known
stream durations) show convergence to the asymptotic QoS.

the blocking probability under the optimal dynamic adaptation
policy goes to zero asymptotically fast, while the blocking
probability under the optimal admission policy goes to zero
as . In addition, the multi-class admission control
implementation requires accurate assessment of the system
parameters and a stationary load, while optimal adaptation
does not. For this reason, optimal adaptation may outperform
optimal admission control for networks servicing nonstationary
workloads. Finally, optimal admission control relies upon
stream durations being known at the time of admission. Op-
timal admission control is therefore not viable for live media.

We investigate the optimal admission control policy in Figs. 6
and 7. Fig. 6 shows a plot of the asymptotic QoS
under the optimal admission policy and two simulation plots
(with at 0.5 and 5.0, respectively) illustrating the convergence
to the asymptotic QoS. Fig. 7 shows a plot of the fraction of
streams blocked under the optimal adaptation policy and under
the optimal admission control policy. Again, two simulations
were used for each case. The optimal asymptotic threshold
was used for all simulations of optimal admission control. Fig. 7
illustrates the higher blocking probability incurred by the op-
timal admission policy in the regime . This might be
expected since the optimal adaptation policy permits adaptation
to admit as many streams as possible, while the optimal admis-
sion control policy does not. Both approaches yield acceptably
low blocking for , and both incur high blocking proba-
bility approaching for .

V. RELATED AND FUTURE WORK

The “client” versus “system” views can be used to classify
related work in the area of supporting rate adaptive multi-
media streams. Representative papers investigating the client
perspective include [7] and [8]. The work in [7] investigates
optimal policies for streams to dynamically adapt the fraction
of their available bandwidth given to base and enhancement
layers. In [8], the authors propose a TCP-friendly congestion
control scheme for rate adaptive video which makes smart use
of buffering to absorb short time scale congestion.

Fig. 7. Plot of the blocking probability b versus the capacity scaling parameter
 under the optimal adaptation policy and under the optimal admission policy.
Two simulations were run for each case (� = (0:5; 5:0)).

Papers investigating the system perspective include [9]–[13].
The work presented in [9], [10], and [11] uses an almost iden-
tical model for QoS to ours, but neither investigates optimal
adaptation, which is central to our effort. In [12], the authors
offer a system level analysis of rate adaptive streams, but in
a static context, i.e., a fixed number of streams. Also related
is [13], which investigates a model where the server dynami-
cally adjusts the number and rate of each subscription layer in
response to congestion feedback. We feel such server adaptive
models are of less interest than client adaptive models because
the former does not generalize well to multicast scenarios. Our
other work in this field [5], [14] also takes a system perspective.

Another body of work addresses distributed algorithms for
rate adaptive multimedia streams. Representative papers include
[15]–[17]. The work in [15] analyzes the performance of a rate
adaptation algorithm where clients probe the network to deter-
mine congestion and then adjust their subscription level accord-
ingly. In [16], the authors contrast a server which adapts the
compression level of the stream to match with client require-
ments versus a server which provides a fixed set of encodings.
Finally, [17] proposes a distributed algorithm for layered media
with emphasis on efficient use in a multicast scenario.

A different approach to the problem of admission control is
taken in [18] which identifies competitively optimal admission
policies; it might be interesting to extend this work to the rate-
adaptive case.

The field of media quality assessment has developed several
metrics for media quality versus encoding rate [19]–[25]. These
“distortion measures”, e.g., sum of squared differences (SSD),
mean squared error (MSE), peak signal-to-noise ratio (PSNR),
are quantifiable means of assessing quality, but their correlation
to human subjective evaluation is tenuous due to the complex-
ities in the human psychovisual system [21]. These metrics are
in general nonlinear functions of the encoding rate, but linear
approximations (see Fig. 1) to these functions would seem rea-
sonable within a range of interest.

Our future work on this topic is currently focused on pricing
models for multiple classes of streams with different QoS
guarantees. We are also interested in extending our current
distributed algorithm implementations to actual networks for
testing.
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VI. CONCLUSION

The primary contributions of this work are: 1) identification
of optimal adaptation policies as two-rate policies; 2) proof that
static admission control achieves asymptotic optimal QoS for
large capacity links multiplexing large numbers of streams; and
3) distributed algorithms that might feasibly be implemented on
real networks and achieve near-optimal QoS.

We emphasize several points. First, the near-optimality of
two-rate policies is a consequence of our linear QoS mea-
sure. Second, the optimality of volume discrimination is a
consequence of our QoS measure being normalized by stream
volume. Third, although stream volume discrimination may
be unfair to large volume streams during congestion, we
emphasize that it is precisely these streams that are most re-
sponsible for the congestion itself. We take the approach that
such streams are perhaps therefore justified in bearing the brunt
of the “adaptation load”, and that to do otherwise is to risk
incentive incompatibility with reducing network congestion.

APPENDIX

Proof of Theorem 1

Let ( , ) denote the stream admitted into the system on
route . Define the random instantaneous QoS of stream ( , )
at a stationary time as

otherwise
for the arrival time of stream ( , ). Now define the random
instantaneous aggregate QoS of the network at a stationary time

as

Next, define the time average instantaneous aggregate QoS of
the network as

where the second equality follows by ergodicity, and de-
notes expectation with respect to the stationary distribution. Let
the customer average QoS on route be defined as

where we again have the second equality by ergodicity, and
denotes expectation with respect to a customer average. Note
that 1) the admission policy is independent of the adaptation
policy, and 2) in terms of admission, the system is a stochastic
knapsack with continuous sizes [6]. Thus, there is a blocking
probability on each route, , and the rate at which streams are
admitted into the system on route is . Let the
expected QoS of a typical stream be

where . This can be thought of as choosing a
random customer by conditioning on the probability of choosing

a customer from a given route. Now, straightforward application
of Brumelle’s Theorem [26] yields

which gives

Thus, maximizing the expected QoS of a typical stream is equiv-
alent to maximizing the expected instantaneous aggregate QoS
at a stationary time . Brumelle’s Theorem can be understood
as a generalization of Little’s Law.

We restrict ourselves to nonanticipatory policies, i.e., those
which only make use of information available at time . To this
end, define the filtration to represent what is
known at time , which in this case includes the adaptivities,
arrival times, durations, and maximum subscription levels of all
active streams, i.e.,

where is the time of arrival of stream ( , ). To find the
optimal adaptation policy, we will seek to maximize

over all feasible ,
where we can assume the random variables and are
known because they are in . Feasible requires

and that the link capacity constraints be obeyed. This yields
(6).

We next prove the existence of an allocation with
that is nearly optimal, with a bound

given by (7). We denote the value of the objective under an
allocation as

and denote the load on each link under an allocation as

The capacity constraints will be written

We will also use the following notation, where the right-hand
sides are understood to hold for all :

Consider the problems , , :
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Let us denote a solution of , , by , , .
Note that is a relaxation of , and that is a relaxation
of , implying .

We next show there exists a solution of which assigns at
most all but one stream per route either its minimum or max-
imum subscription level by showing the value of the objective
function is not decreased by changing the allocation to one that
does satisfy that property. Suppose is a solution to
and let ( , ) and ( , ) be two streams on route receiving
an intermediate allocation, i.e., and

. Suppose that we assume
and define . Define

. Now consider the alloca-
tion where aside from
and . Note that is feasible and that
either or so that the allocation

decreases the number of streams on route with interme-
diate rates by one. We can show the value of the objective func-
tion under exceeds that under as follows:

We can continue to shift the allocations in this manner until at
most one stream has an intermediate rate on each route.

Let therefore denote a solution to with at most one
stream receiving an intermediate rate per route. Define the al-
location as equaling but with the allocation for the
streams receiving intermediate rates set to their respective min-
imum. Similarly, define the allocation as equaling
but with the allocation for the stream receiving intermediate
rates set to their respective maximum. Clearly,

. Moreover, since
is an allocation satisfying the constraints of and is

a solution to . Combining these observations yields

We may therefore obtain a bound in the difference in the value
of the objective under versus as

where ( , ) denotes the stream receiving an intermediate allo-
cation under .

We can then bound the relative difference in the value of the
objective under versus as

where and are the minimum and maximum possible du-
rations, is the maximum full subscription level, and is the
minimum possible adaptivity. Finally, is
the total number of active streams on the network at time . Re-
call all random variables are assumed to have finite support, and
are bounded away from 0, so .
Note this bound is very loose. Thus, for networks servicing large
numbers of streams the bound goes to 0.

Proof of Corollary 1

The integer program (6) for the case of a single bottleneck is

We use integer relaxation to transform the discrete constraint
to a continuous box constraint of the form

, then use the change of variables
to obtain

where . This is a standard knapsack relax-
ation problem where the weights are the , the values
are , and the size of the knapsack is . We fill the
knapsack sorted in order of decreasing value per unit weight,
i.e., starting with the smallest .

Proof of Theorem 2

The approach used to prove Theorem 1 applies here as well.
The difference is that the filtration doesn’t include the du-
rations of the active streams. We can recover the current ages

of the active streams from the arrival times as
. This yields
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The same considerations on feasible apply here yielding the
same equation as (6), with replaced by

. Obtaining the bound on (10) is similar to the proof for the
bound on (7), yielding

Proof of Corollary 2

The proof follows directly from the proofs of Theorem 2 and
Corollary 1.

Proof of Theorem 3

Proof of (16). Let denote the QoS of a typical stream
in the scaling of the link capacity under the optimal adapta-
tion policy . Similarly, let denote the instantaneous
allocation to a typical stream at some time after that stream’s
admission:

We can condition on and to obtain

Note that since the optimal adaptation policy does not depend
on the time since the stream’s admission into the system, we
can claim

for the in the right-hand side understood to be a typical time.
This allows

Next, note that under the optimal adaptation policy is
either 1 or depending on whether or not the stream is adapted
at time . Also, note that the whether or not the stream is adapted
is independent of . We write for the probability
that a typical stream with parameters and is
adapted at a typical time in the link.

Dominated convergence allows us to move the limit inside
the integrals:

We focus now on . Let denote
the number of other active streams, besides the stream with
volume , in the system at a typical time . The event that
a stream with volume is adapted at a typical time is equiv-
alent to the event

where we write to denote that the durations of the
other streams active at time have stretched distributions [26].
Thus,

We now define the random variable

so that

We next find the mean and variance of .

By Wald’s identity

Recall Poisson , so that .
Also,
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Now introduce the change of variables :

A similar argument shows that
. We combine the above results to obtain

We next bound the variance of . We can write

for and thereby obtain

Recalling that , we obtain

We consider three cases: 1) ;
2) ; and 3) . Consider
the first case. Define .
Note that implies there exists an such
that for all . A little thought shows

for all . Chebychev’s inequality yields

Noting that is a constant and that
implies

when . A similar analysis for the third case
yields

when . Finally, the set of pairs ( , ) such
that has measure zero. Thus, we conclude

Note that is equivalent to
for . Substituting this into the

integral yields

which easily simplifies to the equation given in the Theorem.

Proof of Theorem 4

It is not difficult to show that, for any random variable

Using the above, straightforward manipulations of the objective
and the constraints allows us to write the problem as

where and
. We use the change of vari-

ables so that the problem becomes

Note that the constraints are linear so that the feasible region is
a convex set. It is easily shown that

which means the objective function is an increasing concave
function. We can therefore use Lagrangian methods to identify
the unique maximum. The Lagrangian is

Taking derivatives with respect to and simplifying yields

Optimality requires , , which
means . Using
yields the result.
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Proof of Theorem 5

For the case of single bottleneck links, the constraint becomes

When , asymptotic zero blocking is impossible, but is
minimized by admitting all streams at their minimum subscrip-
tion level, i.e., . When , we obtain asymptotic zero
blocking by admitting all streams at their maximum subscrip-
tion level, i.e., .

We next find the asymptotic QoS under the optimal admission
policy. Let denote the QoS of a typical stream in the
scaling under the asymptotically optimal admission policy .
Then,

Note that, under , equals if
and 1 otherwise. We condition on to get

This allows
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